
SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS) 

 COGNITIVE RADIO 

 

Louis M. Handler (NASA Glenn Research Center, Cleveland, Ohio, U.S.A.; 

Louis.M.Handler@nasa.gov); Janette C. Briones (NASA Glenn Research Center, 

Cleveland, Ohio, U.S.A.; Janette.C.Briones@nasa.gov)
 

 

ABSTRACT 

 
Radios today are evolving from awareness toward 

cognition.  A software defined radio (SDR) provides the 

most capability for integrating autonomic decision making 

ability and allows the incremental evolution toward a 

cognitive radio.  This cognitive radio technology will impact 

National Aeronautics and Space Administration (NASA) 

space communications in areas such as spectrum utilization, 

interoperability, network operations, and radio resource 

management over a wide range of operating conditions. 

NASA’s cognitive radio will build upon the infrastructure 

being developed by Space Telecommunications Radio 

System (STRS) SDR technology.  This paper explores the 
feasibility of inserting cognitive capabilities in the NASA 

STRS architecture and the interfaces between the cognitive 

engine and the STRS radio.  The STRS architecture defines 

methods that can inform the cognitive engine about the 

radio environment so that the cognitive engine can learn 

autonomously from experience and take appropriate actions 

to adapt the radio operating characteristics and optimize 

performance.   

1. INTRODUCTION 

 
Cognitive radio is defined such that the radio senses the 
environment, understands context, acts on the knowledge, 
and learns from previous actions and results. If NASA uses 
cognitive radios, they should be able to communicate with 
both legacy and other cognitive radios because of the 
difficulty of replacing currently deployed radios in space. 
Common cognitive radio architectures are desired over a 
large class of radios so that the knowledge base and lessons 
learned may be used on the next radio thereby saving money 
by not having to reinvent such a radio each time. There may 
also be economies of scale so that the systems of radios built 
to the architecture pass information back and forth to 
optimize the system of radios rather than just a single radio. 
 

2. STRS COGNITIVE RADIO EVOLUTION 
 

If NASA uses cognitive radios in space, the requirements 
would differ from those for the usual terrestrial requirements 
in that satellites move rapidly, encountering a wider range of 
atmospheric, solar, and cosmic effects, normally using higher  

 
Figure 1 STRS Layer Cake Model 

 
frequency waveforms, and with longer distances and delays 
between radios.  STRS was designed with NASA’s needs in 
mind and is an ideal base to extend into the cognitive realm.   

To optimize data throughput within a system of 
cognitive radios including space-based radios, dynamic 
spectrum and resource management may be needed.  For 
NASA, cognitive radio is not just concerned with 
frequencies and bandwidth, but may also be concerned with 
such things as power management, antenna direction, 
temperature compensation, or even switching waveforms. 

The STRS architecture contains methods to query to 
obtain information about the SDR, its environment, and its 
waveform applications as well as methods to control the 
operation of the SDR.  A cognitive engine may use these 
features to optimize performance autonomously under 
adverse conditions.   The cognitive data for a NASA SDR 
must include information about mission requirements and 
radio capability; for example, a NASA SDR could control 
satellite navigation or antenna pointing.   

A layer cake view of the STRS architecture is shown in 
figure 1.  The waveform applications and high level services 
are shown as a software layer at the top with optional 
portions in specialized hardware such as field-programmable 
gate arrays (FPGAs) in the bottom layer.  The initial idea is 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

161

mailto:Louis.M.Handler@nasa.gov


to treat the cognitive portion of the radio as a high level 
service before breaking it down further. 

In STRS, the waveform applications and high-level 
services are separated from the operating environment 
(similar to core framework) by application programmer 
interfaces (APIs) rather than some middleware.  The 
operating environment manages the components of the SDR 
and consists of the STRS infrastructure that implements the 
STRS APIs as well as the operating system (OS) that 
implements the POSIX API subset, a hardware abstraction 
layer (HAL), and any board support package (BSP) and 
drivers needed to use the general-purpose processing module 
(GPM) or specialized hardware.     

The cognitive process of Joe Mitola [1] is broken down 
into components that observe, learn, orient, plan, decide, and 
act.  These parts of a cognitive engine may be separate or 
integrated with the software defined radio, but to maintain 
the basic STRS architecture, they will be considered to be 
separate.  Another breakdown of the cognitive process is 
described in [2] where the software defined radio is put in its 
place as an independent entity controlled by intelligent 
agents or decision-making process with a radio-domain 
adaption layer between.  In [3], kinds of information are 
categorized as link state, application state, spatial state, and 
environment state from which data is extracted for learning.  
There may be additional states as the mission may require. 

There are a variety of ways to depict the radio of the 
future.  Some of these abstractions use different notation and 
terminology to accomplish the same thing.  Similar to the 
egg model in [2], figure 2 depicts a cognitive radio showing 
concentric layers and combining many features of these 
complimentary approaches.  Figure 2 shows a cognitive 
radio that can perform its functions as a radio, obtain 
parameters defining internal state and external environment, 
make decisions, and implement those decisions.  

This model shows the outside world as the outer layer 
with the radio as both a sensing and communicating device, 
controlled from the decision-making and learning core.  The 
radio API may be any architecture such as STRS or Software 
Communications Architecture (SCA) with the Radio Adapter 
layer calling the appropriate radio-domain functions for that 
architecture.  This model shows some of the pertinent STRS 
methods described in [4].  This model does not break down 
the radio functions, the decision-making, or learning cycles 
enough to get to the beginnings of an implementation. 

In what follows, the integration of the SDR with the 
cognitive engine as shown in figure 2 is developed further. 

 

3. LEARNING INFORMATION AND 

DECISION-MAKING 
 
The outcome of the decision-making process may change as 
the context evolves.  As described in [3] different categories 
of state information are kept for use by its Context-Aware 
Routing Engine (CARE) decision-making program.  The 
information in the categories listed below is tracked 
information that is being observed through the radio and 
learned by the cognitive engine where actions are decided 
and acted upon by the radio to affect that information.  The  

 
Figure 2. Combination Model of Cognitive Radio. 

 
following sections have been augmented for additional state 
information that might be required for a space 
implementation.  STRS provides the methods to obtain the 
state information required and to perform the actions 
required. 

 

3.1. Link State Information 
Link state information includes such data as current channel 
bandwidth, observed bit error rate (BER), round trip time, 
transmit power, and the encoding overhead of the current 
modulation scheme.  This link state information comprises a 
set of metric parameters that are platform independent and 
can be used for the evaluation of radio performance. Link 
state information can be captured from different sources.  
The current bandwidth and observed bit error rate (BER) can 
be most easily obtained from the running waveform 
application.  Other link state information may be observed by 
a set of services that monitor various sensors and external 
signals.   

 

3.2. Application State Information 
This is information about the currently running waveform 
applications and the types of data they wish to send.  This 
information includes carrier frequency, modulation scheme, 
symbol rate, etc.  Different types of data are sensitive to 
changes in particular network characteristics, and these 
sensitivities must be considered when making routing 
decisions. For example, real-time traffic may be tolerant of 
loss, but less so of jitter; vehicle health telemetry may 
require low bandwidth, but have bounds on latency; and 
large data files from science instruments may need high 
bandwidth and low error/loss rate, but may accept some 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

162



latency or jitter. In situations where multiple types of data 
are awaiting transmission, it may be determined that it is 
feasible to transmit one type given the current environment, 
while determining that no viable path exists for another type. 
The application state can be obtained from the waveform 
application. 

 

3.3. Spatial State Information 
Information about the relative physical locations of other 
nodes in a network may be available.  This information can 
be used to help determine the best of several possible 
neighbors to use as a relay. Additionally, if the nodes move 
along well-known paths (for example, a satellite in orbit), 
then the future location of neighbors can be determined. In 
this case, transmission of data may be deferred in 
anticipation of a known-good relay becoming available. The 
contact graph routing mechanism proposed as part of the 
Delay-Tolerant Network (DTN) framework formalizes this 
concept for end-to-end path computations when future node 
positions are known but there is no connected path. Spatial 
state can be obtained from signal round-trip times, time of 
day, orbital computation, and known relationships.  Global 
Positioning System (GPS) provides a way to determine 
location that is an element of spatial state. 

 

3.4. Environment State Information 
This includes information about the current local 
environment of the node, such as available electrical power, 
temperature and other health information. If power 
consumed by the radio is a concern, the cognitive radio may 
decide to relay data through a neighbor that can be reached at 
lower power instead of one that may provide a better end-to-
end path.  Temperature information may be used to adjust 
application parameters for optimal performance for that 
temperature.  Environment state information can be obtained 
by a set of services that monitor various sensors and external 
signals.   

 

3.5. Radio Platform Information 
In addition to the states delineated in [3], the radio platform 
information must be kept for use in the decision-making 
process. This information includes the configuration 
parameter set of the radio platform to carry out required 
waveform and link operations.  This configuration is 
platform specific and the settings depend on the required 
radio functionalities. 

 

3.6. Mission Information 
Beyond the state is the mission definition in terms of what 
has to be done, with what kind of radios, where, and when.  
Since NASA missions usually are concerned with collecting 
data, the source of that data may only be available when the 
radio is in a certain range of positions.  Also the capability 
and reconfigurability of the current software-defined radio 
must be specified.  There may be fixed rules as well as 
learned rules.   

 
Figure 3. STRS Integration Layer Cake Model. 

 

3.7. Cognitive Process  
The current state, known limitations, historical trends, 
schedule, and mission requirements must be captured in one 
or more databases. In [1] Radio Knowledge Representation 
Language (RKRL) is suggested and in [3] Web Ontology 
Language (OWL) is suggested for a radio-oriented ontology 
using extensible markup language (XML).  Since eliminating 
an XML parser was one of the defining features of STRS, we 
will study whether another standard data format can be 
recognized and used by a decision-making process. 

The learning process should include saving data as a 
function of time because many data items may have start and 
stop times, or may be cyclical in either space or time.  
Decisions may be made according to some detected event, 
by the gradual fade in or out of some signal, or by a 
predicted scenario.  A predicted scenario may be used to 
approximate when events will occur to optimize 
computational effort of the decision-making process. 

Once the decisions are made, actions are determined.  
Possible actions may include changing path selection, setting 
quality of service parameters to meet application needs, 
deferring transmission until a later time (possibly by passing 
the traffic to a local DTN), transmitting some types of traffic 
ahead of others, requesting a particular encoding from the 
underlying cognitive radio, notifying applications of the 
current context so that the applications can make decisions 
about what data to send next, or some combination of these. 

 
 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

163



4. HIGH LEVEL DESIGN 

 
Figure 3 shows the high level layer-cake design of the STRS 

with cognitive capabilities.  The waveform applications and 

services use STRS-specific APIs to call the STRS 
infrastructure as well as a POSIX application environment 

profile (AEP) to call functions within the OS.  Similarly, the 

STRS infrastructure uses an STRS-specific API to call the 

waveform applications and services.   

The cognitive engine may be thought of as an extension 

of one or more services such that its connection to the STRS 

software defined radio is through the standard APIs.  The 

cognitive engine is further broken down internally as shown 

in [1].  A general cognitive engine obtained separately 

would have components for observe and act that have a 

different interface from the STRS APIs, in which case an 

additional radio adapter layer would be required. 

In figure 3, an adapter layer is added to the high level 

services as shown in figure 1.  Also, in figure 3, the cognitive 

engine is added at the top with its connection to the adapter 

layer confined to the functions of observe and act.  The radio 

adapter interface consists of an observer part that is 

responsible for sending platform knowledge to the decision-
making process, and an actor part that uses configuration and 

control information to instruct the radio to perform specific 

operations by changing parameters or applications to 

improve the functioning of the radio when dealing with 

situations not planned initially. 

 

5. STRS COGNITIVE RADIO DESIGN 
 
A unified modeling standard (UML) design is shown in 
figure. 4.  The UML provides a simple object oriented design 
in which we can define data structures as well as data 
content.  The Observer passes the data to the cognitive 
engine in a format that it can use for processing.  The 
Observer may obtain data at various time intervals, prepare, 
and save the data for the cognitive engine.  The Observer 
would not need to test the data. The data would be time 
stamped and stored for learning and testing.   

The Actor obtains data from the cognitive engine for 
controlling the radio.   

The cognitive engine in figure 4 is a placeholder for all 
the artificial intelligence that makes it a cognitive radio.  The 
cognitive engine should be in control of the radio, deciding 
whether there is a problem, determining the alternative 
actions, selecting which one is appropriate, and performing 
the most appropriate action.   The Decision-Maker should 
have various kinds of tests and values, but it also needs rules, 
heuristics, priorities, and actions.   

The Observer is broken down further by specifying an 
associated platform-specific radio-adapter class, which is 
denoted by ObserveSTRS.  ObserveSTRS is the part of the 
radio-adapter that uses STRS APIs to obtain data, which it 
then reformats for the Observer portion of the cognitive 
engine.    

 
Figure 4. STRS Cognitive Radio 

 
Similarly, the Actor is broken down further by 

specifying an associated platform-specific radio-adapter 
class, which is denoted by ActSTRS.  ActSTRS is the part of 
the radio-adapter that translates the actions from a format 
that the cognitive engine knows to a format that the radio can 
use.  The ActSTRS uses the SDR’s APIs to change the 
function of the radio to carry out the decisions.     

The Cognitive Engine in figure 4 could be broken down 
further into blocks to orient, plan, decide, learn, etc.  The 
Cognitive Engine should evolve from one that performs tests 
on variables to determine when the radio is in a fault state 
with the simple action to reboot the radio to one that is truly 
cognitive; i.e. that changes parameters or applications to 
improve the functioning of the radio alone or in a system of 
radios.   
In a well-understood environment, a knowledge-based 
system can make excellent decisions and provide the 
appropriate adaptation.  But in a rapidly changing space 
environment, subject to varying temperature and radiation 
effects, or one subject to long delays due to large distances 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

164



between radios, the radio must be able to act more 
autonomously.   

In the evolution of the cognitive engine, the orient and 
plan functions could be combined when the testing that 
establishes priority or severity cannot be separated from 
some knowledge of what is wrong or could be improved 
with some corresponding action.  But, more likely, each 
component would be broken down, adding additional classes 
or packages, to specify its functionality in greater detail. 

As part of the learning process, for example, one would 
likely add blocks for data mining, neural networks, etc.  
These are just a sample of what artificial intelligence 
modules might be necessary.  Learning systems require 
observations to draw conclusions.  Neural Networks (NN) 
can be trained by providing a set of known inputs and 
desired outputs, and it is these observations that are used by 
the NN to learn the desired behaviors.  Feedback provided by 
monitoring the results of using the outputs, is required for 
learning.   

The stored data or functions of the data could be mined 
periodically for interesting trends or recurrences that could 
be taken advantage of.  A predictor would know the schedule 
of events along with any location information, possibly 
including satellite ephemeris data.  

The added ManageCR component in figure 4 is a 
placeholder for the meta-learning process.  This component 
controls the learning process and tries to improve that 
learning process.  For example, on long missions during 
times when nothing much is happening, time and power may 
be available for further data mining whereas during normal 
operation, some of that time and power may be needed for 
transmission or reception. 

When a detailed design is created, both observed data 
and inferred data would have to be added to figure 4.  A 
certain amount of current and historical data must be kept for 
learning. In the simplest model they could be stored in tables 
or simple files.  As greater complexity is added, one or more 
databases would probably be required.   

The observed data may be supplied by querying the 

operating waveforms, the operating environment (OE), or 

any services that supply any additional information.  For 

example, a service could be written to supply information 

about what external radio signals are encountered, their 

frequency, and signal strength that would be tested against 

the predicted schedule to determine when a new satellite 

comes over the horizon.  To allow a fairly general 

architecture to be used, much of the rest of the data should be 

in configuration files. 

The following must be considered in implementing the 
configuration files: 

1) Allow decisions based on complex equations 

involving values of multiple attributes over 

multiple applications. 

2) Allow decisions based on experience/learning. 

3) Allow decisions based on data mining, neural 

networks, etc. 

4) Allow decisions based on evaluating prioritized 

alternatives. 

5) Allow a more complicated range of actions 

than merely changing a parameter. 

6) Include a bridge that allows different cognitive 

architectures to play with different radio 

architectures. 

 

6. CONFIGURATION FILE DATA 

 
To keep the design and implementation as general as 
possible, the data items for the cognitive functions should be 
defined in configuration files.  Since the cognitive functions 
don’t have to be STRS applications, the configuration files 
may or may not follow the same format as the STRS 
application configuration files.  There are specific formats 
required by various commercial off-the-shelf (COTS) 
products that perform corresponding cognitive functions.  
Therefore, there may need to be additional interface pieces to 
convert the formats. 
 

6.1. Observer/ObserveSTRS data used 
The observed data should be obtained using STRS_Query or 

STRS_RunTest for each active application and any services 

that monitor the platform or external sensors.  To make this 

data configurable, the name in the Decision-Maker would 

correspond to a process for obtaining the data from the 

SDR.  A configuration file would contain: 

1) The name of the item in the Decision-Maker 

2) The name of the attribute in the SDR 

(parameter name) 

3) Where in the SDR to find it (the component’s 

handle name in the SDR) 

4) How to find it in the SDR (STRS_Query or 

STRS_RunTest) 

5) Test ID if STRS_RunTest is used 

6) How often to check for changes or whether 

event driven 

 

6.2.  Decision-Maker data used 

The Decision-Maker data should have various kinds of tests 

and values for that test.  It should have rules, priorities and 

actions to be perform when a problem exist.  A configuration 

file would contain: 
1) The type of test or equation or heuristic to 

perform 

2) The values needed for that test, which may 

include names of data items observed or 

learned 

3) Actions to take if the test shows a problem 

4) Priority/severity for each problem 

 

6.3. Actor/ActSTRS data used 
Actions requested by the cognitive engine must be 

translated into radio commands.  For example, actions to 

reconfigure some parameter may be translated into an 

STRS_Configure command or may require a preceding 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

165



STRS_Stop and following STRS_Start.  A configuration file 

for actions would contain: 

1) The name of the item in the Decision-Maker 

2) The name of the attribute in the SDR 

(parameter name)  

3) Where in the SDR to find it (the component’s 

handle name in the SDR) 

4) Action to take in the SDR as a combination of 

the following: 
a) STRS_Configure  

b) STRS_Stop 

c) STRS_Start 

d) STRS_AbortApp 

e) STRS_InstantiateApp  

f) STRS_Initialize 

g) STRS_Reboot (new) or equivalent 

5) Configuration file to use if the application is 

reinitialized  

6) Value of a corresponding attribute to change in 

SDR 

Although the first three items in the list above appear to 

be the same as the first three items in the list for the 

observer, they do not have to be the same since there may be 

attributes that are queryable only (not configurable) as well 

as actions without attribute values to configure.  

 

7. FUTURE EFFORTS ON COGNITIVE RADIO  

 
When designing an STRS cognitive radio for a particular 

purpose using the STRS architecture standard [4], the user 

must understand the capabilities of the radio, the mission 

requirements, the allowed actions, and supporting data.  

Then, the user must design how the data will be kept, 

decisions made, and actions performed.  The cognitive 

engine may be purchased and integrated into the radio or 

developed separately.  The cognitive engine will use the 

information learned and the available actions to select the 

appropriate actions.  
It is assumed that not every cognitive radio function can 

be anticipated; however, a framework should be established 
that would encompass all types of available actions and use 
any internal or external data to decide what to do and cause 
the appropriate actions.  Such a general framework is 
suggested in the previous section.  The design indicated in 
this paper will allow technology improvements to optimize 
radio performance, using the latest state-of-the-art cognition 
engine.  The performance feedback allows both the creator of 
the waveform application and the radio itself to determine 
changes needed in the variables observed and actions 
performed, optimizing radio performance and autonomous 
decision-making for SDRs under space and ground 
conditions. 

The integration of artificial intelligence and SDR 
technologies enables the new field of cognitive radio.  These 
enabling technologies will create new capabilities for new 
science opportunities.  Cognitive radio technology has the 
potential to lower the operational costs and improve 
performance when included in NASA’s existing networks. 

 

8. REFERENCES 
 

[1] J. Mitola and G. Maguire, “Cognitive Radio: Making 
Software Radios More Personal,” IEEE Personal 
Communications, Vol 6, No. 4, August 1999. 

[2] B. Le, T. W. Rondeau, and C. W. Bostian, “General Radio 
Interface Between Cognitive Algorithms and Reconfigurable 
Radio Platforms,” SDR Forum, 2007. 

[3] W. D. Horne, T. Suaris, R. T. Gilstrap, and R. Rogalin, 
“Developing the Building Blocks for Cognitive 
Communications: Adaptive Rates & Intelligent Networking,” 
IEEE Aerospace Conference, 2011. 

[4] Space Telecommunications Radio Systems (STRS) 
Architecture Standard, Version 1.02.1, NASA/TM-2010-
216809.  

 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

166


